Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications.

نویسندگان

  • Ana Guimarães
  • Albino Martins
  • Elisabete D Pinho
  • Susana Faria
  • Rui L Reis
  • Nuno M Neves
چکیده

AIM Utilize the dual composition strategy to increase the pore size and solve the low cell infiltration capacity on random nanofiber meshes, an intrinsic limitation of electrospun scaffolds for tissue engineering applications. MATERIALS & METHODS Polycaprolactone and poly(ethylene oxide) solutions were electrospun simultaneously to obtain a dual composition nanofiber mesh. Selective dissolution of the poly(ethylene oxide) nanofiber fraction was performed. The biologic performance of these enhanced pore size nanofibrous structures was assessed with human osteoblastic cells. RESULTS The electrospun nanofiber meshes, after the poly(ethylene oxide) dissolution, showed statistically significant larger pore sizes when compared with polycaprolactone nanofiber meshes with a similar polycaprolactone volume fraction. This was also confirmed by interferometric optical profilometry. Using scanning electron microscopy and laser scanning confocal microscopy, it was observed that osteoblastic cells could penetrate into the nanofibrous structure and migrate into the opposite and unseeded side of the mesh. CONCLUSION An electrospun mesh was created with sufficient pore size to allow cell infiltration into its structure, thus resulting in a fully populated construct appropriate for 3D tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun nanostructured scaffolds for tissue engineering applications.

Despite being known for decades (since 1934), electrospinning has emerged recently as a very widespread technology to produce synthetic nanofibrous structures. These structures have morphologies and fiber diameters in a range comparable with those found in the extracellular matrix of human tissues. Therefore, nanofibrous scaffolds are intended to provide improved environments for cell attachmen...

متن کامل

The Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering

Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...

متن کامل

Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes.

Cartilage defects are a major health problem. Tissue engineering has developed different strategies and several biomaterial morphologies, including natural-based ones, for repairing these defects. We used electrospun polycaprolactone (PCL) and starch-compounded PCL (SPCL) nanofiber meshes to evaluate extracellular matrix (ECM) formation by bovine articular chondrocytes (BACs). The main aim of t...

متن کامل

Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds.

Using a stainless steel mesh as a template collector, electrospun nanofiber meshes with well-tailored architectures and patterns were successfully prepared from biodegradable poly (epsilon-caprolactone) (PCL). It was found that the resulting PCL nanofiber (NF) meshes had similar topological structures to that of the template stainless steel mesh. Such PCL nanofiber meshes (NF meshes) had improv...

متن کامل

The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering.

BACKGROUND The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. METHODS The bulge region of rat whisker was isolated and cultured in DMEM: n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 2010